THERMAL STABILITY AND GLASS TRANSITION BEHAVIOR OF PANI/γ-Al₂O₃ COMPOSITES

Y.-N. Qi^{1,3}, F. Xu^{1*}, H.-J. Ma^{2,3}, L.-X. Sun¹, J. Zhang^{1,3} and T. Jiang^{1,3}

¹Materials and Thermochemistry Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road, Dalian 116023, P. R.China

²Laboratory of Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences

457 Zhongshan Road, Dalian 116023, P. R. China

³Education School of Chinese Academy of Science, Chinese Academy of Sciences, 19 Yu Quan Road, Beijing 100039, P. R.China

Polyaniline/ γ -Al₂O₃ (PANI/ γ -Al₂O₃) composites were synthesized by in-situ polymerization at the presence of HCl as dopant by adding γ -Al₂O₃ nanoparticles into aniline solution. The composites were characterized by FTIR and XRD. The thermogravimetry (TG) and modulated differential scanning calorimetry (MDSC) were used to study the thermal stability and glass transition temperature (T_g) of the composites, respectively.

The results of FTIR showed that γ -Al₂O₃ nanoparticles connected with the PANI chains and affected the absorption characteristics of the composite through the interaction between PANI and nano-sized γ -Al₂O₃. And the results of XRD indicated that the peaks intensity of the PANI/γ-Al₂O₃ composite were weaker than that of the pure PANI. From TG and derivative thermogravimetry (DTG) curves, it was found that the pure PANI and the PANI/γ-Al₂O₃ composites were all one step degradation. And the $PANI/\gamma-Al_2O_3$ composites were more thermal stable than the pure PANI. The MDSC curves showed that the nano-sized $\gamma-Al_2O_3$ heightened the glass transition temperature (T_g) of PANI.

Keywords: glass transition, $PANI/\gamma - Al_2O_3$ composites, thermal stability

Introduction

Conducting polyaniline (PANI) composites have been widely studied in recent years for their numerous applications in various electrical and electronic devices [1]. PANI/inorganic nanoparticles composites, as one important class of these materials, have attracted extensive attention, due to their combination of the PANI characteristics and inorganic nature [2]. Now, three main types of inorganic nanomaterials are used as inorganic fraction. The first interesting type is metal oxide [3], which can improve the properties of PANI in the field of electricity, magnetism, etc. [4–6]. The second type is metal nanoparticles. Up to now, many PANI/metal composites such as PANI/Au, PANI/Ag and PANI/Ni nanocomposites have been prepared using chemical or electrochemical method [7, 8]. The third main type of inorganic nanomaterials is carbon nanotube [9], which could improve the conductivity of PANI [10–12].

Most of these inorganic nanomaterials are thermal stable [13] and can improve the thermal stability of PANI. Yoshimoto, Ray, etc. have studied the thermal stability of the PANI/inorganic nanoparticles composites, and found that inorganic nanomaterials such as montmorillonite clay and carbon nanotube could improve the thermal stability of PANI [14–16].

Ding [17] and Kazim [18] studied the T_{g} of PANI and PANI/Te nanocomposites, respectively, and found that the Te nanoparticles could decrease the T_g of PANI. However, to the best of our knowledge, the effect of γ -Al₂O₃ nanoparticles on the thermal properties of PANI was not studied. γ -Al₂O₃ nanoparticles are special inorganic nanomaterials, which could change the mechanical behaviors of polymer and could decrease the T_g of PMMA [Poly (methyl methacrylate)] [19]. So, for the use of $PANI/\gamma-Al_2O_3$ composite, it is necessary to study the influence of γ -Al₂O₃ nanoparticles on the $T_{\rm g}$ and thermal stability of PANI. In our present work, the PANI/y-Al₂O₃ composite was synthesized by in-situ polymerization. The FTIR spectra and XRD patterns were studied to examine constitutes of the composites. Thermal analytical experiments were performed to compare the thermal properties (thermal stability and T_g) of PANI/ γ -Al₂O₃ composites with the pure PANI.

Experimental

Materials

Aniline obtained from Shenyang Federation Reagent Factory was purified twice by vacuum distillation and

Author for correspondence: fenxu@dicp.ac.cn

was stored in refrigerator before use. Ammonium persulfate ($(NH_4)_2S_2O_8$, APS) used as an oxidant was purchased from Tianjin Jizhun Chemical reagent Co. Ltd, hydrochloric acid (HCl) was provided by Haerbin Chemical Reagent Co. and γ -Al₂O₃ nanoparticles with particle size of approximately 20 nm was obtained from Nanjing Haitai Technology Nano-Co. Ltd. All chemical reagents were of analytical grade.

Preparation of PANI/y-Al₂O₃ composites

The PANI/ γ -Al₂O₃ composite was synthesized by in situ polymerization, which was similar to [20]. Firstly, a known volume of aniline was injected into 10 mL of 2 M HCl aqueous solution, stirred for 0.5 h. And then γ -Al₂O₃ nanoparticles were added into the above solution with stirring and ultrasonic action to reduce the aggregation of γ -Al₂O₃ nanoparticles. After 5 h, a known amount of APS (dissolved in 10 mL deionized water) was dropped into the above solution with stirring. The reaction mixture was continuously stirred at room temperature for 12 h. The production was then washed thoroughly with methanol and deionized water repeatedly till the filtrate was colorless. Finally, the product was dried in vacuum at 80°C for 24 h. For each experiment, the molar ratios of aniline to HCl and to APS were retained at 1:0.5 and 1:1, respectively.

Instrumental methods

FTIR and XRD spectra

Fourier transform infra-red (FTIR) absorption spectra of pure PANI and PANI/ γ -Al₂O₃ composites were performed on a Bruck Equinox 55 spectrophotometer in the wavelength range of 4000–400 cm⁻¹. The specimen substrate was a KBr disc. The XRD patterns of γ -Al₂O₃, pure PANI and PANI/ γ -Al₂O₃ composites were recorded on a PANalytical X'Pert PRO diffractometer fitted with CuK_{α} radiation (λ =1.5404 nm) at 40 kV and 40 mA, with a scanning speed of 10°C min⁻¹.

Thermal properties

The thermogravimetry of pure PANI and $PANI/\gamma\text{-}Al_2O_3$ composites were performed using a thermogravimetric analyzer DT-20B instrument. TG curves were obtained under air atmosphere at a heating rate of 10°C min⁻¹ from room temperature to 800°C with a flow rate of 30 mL min⁻¹. The glass transition temperatures of pure PANI and PANI/y-Al₂O₃ composites were measured by modulated differential scanning calorimetry (MDSC) on a Q1000 from TA Instruments, in a temperature range from 50 to 250°C, at a heating rate of 3°C min⁻¹. The temperature scale of the instrument was calibrated at a heating rate of 20°C min⁻¹ with the melting points of indium. The energy scales were calibrated with the heat of fusion of indium. Crimp aluminum alloy pans were used under dry nitrogen flow (50 mL min⁻¹). Standard modulation conditions were amplitude $A_{\rm T}$ of 0.5°C and a period of 40 s.

Results and discussion

Structure characterization of $PANI/\gamma$ - Al_2O_3 composites

Figure 1 represents the FTIR spectra of (a) γ -Al₂O₃ nanoparticles, (b) pure PANI and (c) PANI/y-Al₂O₃ composite [46.2/53.8 (mass/mass)]. From Fig. 1b, it can be obviously seen that the peaks of pure PANI are in good agreement with those reported in the literatures [21-23]. The characteristic peaks at 1572 and 1492 cm⁻¹ for emeraldine salt form of PANI can be clearly seen, which are ascribed to C=C stretching vibration of quinoid rings and benzenoid rings, respectively. The presence of absorption band at 1295 cm⁻¹ is corresponding to the C-N stretching mode for benzenoid unit, while the band at 1130 cm⁻¹ is attributed to C-H in plane bending vibration of quinonoid unit. And the band at 804 cm⁻¹ is associated with C–H out plane bending vibration of benzenoid unit, which indicates the polymer formation. The FTIR absorption spectrum of $PANI/\gamma - Al_2O_3$ composite [46.2/53.8 (mass/mass)] (Fig. 1c) occurs with the peaks at 1588, 1502, 1305, 1145 and 830 cm⁻¹ that are similar with the pure PANI, but all bonds shift to higher wave number. The bond at 640 cm⁻¹ which is attributed to γ -Al₂O₃ nanoparticles (Fig. 1a) can also be seen in the composite. All these phenomena indi-

Fig. 1 FTIR spectra in KBr pellets of $a - \gamma$ -Al₂O₃ nanoparticles, b – pure PANI and c – PANI/ γ -Al₂O₃ composite [46.2/53.8 (mass/mass)]

Fig. 2 XRD patterns of a – γ-Al₂O₃ nanoparticles, b – PANI/γ-Al₂O₃ composite [57.9/42.1 (mass/mass)] and c – pure PANI

cate that the γ -Al₂O₃ nanoparticles connected with the PANI chains and affected the absorption characteristics of the composite through the interaction between PANI and nano-sized γ -Al₂O₃.

XRD patterns of (a) γ -Al₂O₃ nanoparticles, (b) $PANI/\gamma - Al_2O_3$ composite [57.9/42.1 (mass/mass)] and (c) pure PANI are shown in Fig. 2. From Fig. 2a, no peak has been seen at 2θ angles from 5 to 75° for the γ -Al₂O₃ nanoparticles. Both the PANI/ γ -Al₂O₃ composite [57.9/42.1 (mass/mass)] (Fig. 2b) and the pure PANI powders (Fig. 2c) exhibit two broad peaks at 2θ angles around 20 and 26°, which indicate that the PANI/y-Al₂O₃ composite [57.9/42.1 (mass/mass)] and the pure PANI have crystallinity to a certain extent. These peaks may be assigned to the scattering from PANI chains at interplanar spacing [24]. And the peak intensity the $PANI/\gamma - Al_2O_3$ composite of [57.9/42.1 (mass/mass)] is weaker than that of the pure PANI because of the γ -Al₂O₃ nanoparticles adding.

Thermal stabilities of $PANI/\gamma$ - Al_2O_3 composites

TG measurements were performed to analyze the thermal stabilities of PANI/ γ -Al₂O₃ composites. The TG and DTG curves of the γ -Al₂O₃ nanoparticles, the PANI/ γ -Al₂O₃ composite [57.9/42.1 (mass/mass)] and the pure PANI are shown in Fig. 3. The nano-sized γ -Al₂O₃ gives a mass loss of ca. 18.2%, which is attributed to volatile impurities of the nano-sized γ -Al₂O₃ [25]. The TG curve of pure PANI exhibits a total mass loss of ca. 97.7% at ca. 620°C, and then it remains constant till 800°C. In the same temperature range, the mass loss of PANI/ γ -Al₂O₃ composite [57.9/42.1 (mass/mass)] is ca. 76.1%. By calculating, the PANI content per gram of the composite is (76.1–18.2)=57.9%, and the nano-sized γ -Al₂O₃ content is (100–57.9)=42.1%.

Fig. 3 TG curves and DTG curves (inset) of a – γ-Al₂O₃, b – PANI/γ-Al₂O₃ composite [57.9/42.1 (mass/mass)] and c – pure PANI

In Fig. 3, DTG curve of nano-sized γ -Al₂O₃ (inset) shows two endothermic peaks, which are attributed to volatilization of surface and combined water of γ -Al₂O₃, respectively. DTG and TG curves of the pure PANI show two-step mass loss in the temperature range of room temperature to 800°C. The first mass loss represents the dehydration of the hydrophilic PANI surface and HCl dopant in the temperature from ca. 50 to ca. 240°C. The second one is from ca. 240 to ca. 620°C, which is due to the degradation of PANI backbone. The DTG and TG curves of $PANI/\gamma - Al_2O_3$ composite [57.9/42.1 (mass/mass)] are similar to that of the pure PANI. But the peak temperature (T_p) of DTG for PANI/ γ -Al₂O₃ composite [57.9/42.1 (mass/mass)] degradation is different from that of the pure PANI. The T_p (461.9°C) of the PANI/γ-Al₂O₃ composite [57.9/42.1 (mass/mass)] is higher than that (405°C) of the pure PANI. It means that the nano-sized γ -Al₂O₃ improves the thermal stability of the pure PANI, which may be due to the interaction between PANI and γ -Al₂O₃ nanoparticles.

Figure 4 shows the TG and DTG curves of PANI/y-Al₂O₃ composites including different contents of γ -Al₂O₃ nanoparticles. The initial degradation temperatures (T_i) of PANI/ γ -Al₂O₃ composites are listed in Table 1. From Fig. 4a and Table 1, it can be obviously seen that T_i of PANI increases with the nano-sized γ -Al₂O₃ content augment, representing that the nano-sized γ -Al₂O₃ increases the stability of PANI. The T_p (listed in Table 1) of PANI/ γ -Al₂O₃ composites obtained in DTG curves (Fig. 4b), which are all higher than that of the pure PANI, also indicate the same result. But with the content of γ -Al₂O₃ increasing, the T_p of PANI/ γ -Al₂O₃ composites increases first and then decreases a little, finally gets to a constant when the content of nano-sized γ -Al₂O₃ is higher than 53.8 mass%. The reason may be that with the addition of nano-sized γ -Al₂O₃ firstly, the hydro-

Fig. 4 a – TG curves and b – DTG curves of $PANI/\gamma$ -Al₂O₃ composites with different contents of γ -Al₂O₃

gen bonding interactions between the hydroxyl groups on the surface of the nano-sized γ -Al₂O₃ and the imine groups in the PANI molecular chain appear, and the T_p increases, accordingly. Then with the nano-sized γ -Al₂O₃ content increasing, the interactions between two γ -Al₂O₃ nanoparticles enhance, the bonds between γ -Al₂O₃ and PANI weaken, and then the free PANI chains increase, which determines the thermal stability of the composite mainly [24, 26], therefore, the T_p decreases. Finally when the content of nano-sized γ -Al₂O₃ nanoparticles occurs and the solubility of nano-sized γ -Al₂O₃ reaches to a relatively

Fig. 5 MDSC curves of PANI/γ-Al₂O₃ composites

constant. The interaction between PANI and nanosized γ -Al₂O₃ achieves an equilibrium, thus the T_p becomes a constant.

Glass transition temperatures (T_g) of PANI/ γ -Al₂O₃ composites

Figure 5 shows the MDSC curves of $PANI/\gamma - Al_2O_3$ composites with different contents of nano-sized γ -Al₂O₃. The T_g of the composites listed in Table 1 were obtained using the automatic $T_{\rm g}$ analysis software. From Fig. 5 and Table 1, it can be seen that the $T_{\rm g}$ of the PANI/ γ -Al₂O₃ composites are 173.35, 170.01 and 169.10°C when the γ -Al₂O₃ contents are 27.5, 42.1 and 53.8 mass%, respectively. They are all higher than that of the pure PANI (163.19°C). It also indicates that the nano-sized γ -Al₂O₃ could increase the thermal stability of PANI. When the content of the nano-sized γ -Al₂O₃ is higher than 64.7 mass%, the glass transition of the composite could not be found from the curves of MDSC because of the high crosslink degree of the PANI chains [17]. The $T_{\rm g}$ of the pure PANI obtained in this paper is different from that reported. Ding reported that the $T_{\rm g}$ of PANI (base form) was approximately 250°C [17] and Kazim found it was 94°C (SO₄²⁻ salt form) [18]. The difference may be due to different crosslink degree of PANI chains.

Table 1 T_i of TG, T_p of DTG, and T_g of MDSC for the PANI/ γ -Al₂O₃ composites

Sample	PANI/mass%	γ -Al ₂ O ₃ /mass%	$T_{\rm i}/^{\rm o}{ m C}$	$T_{\rm p}/^{\rm o}{ m C}$	$T_{\rm g}$ /°C
	100	_	297.4	405.0	163.19
1	72.5	27.5	307.3	470.6	170.35
2	57.9	42.1	337.1	461.9	170.01
3	46.2	53.8	364.7	459.0	169.10
4	35.3	64.7	367.5	459.0	_

Conclusions

By in-situ polymerization, the PANI/ γ -Al₂O₃ composites are synthesized in the presence of HCl as dopant. FTIR spectra and XRD patterns indicate that the nano-sized γ -Al₂O₃ was compounded into the PANI chains.

The result of thermogravimetry suggests that the PANI/ γ -Al₂O₃ composites are more thermal stable than the pure PANI. And the T_g of the composites is also higher than that of the pure PANI (163.19°C). It is all ascribed to the interaction between nano-sized γ -Al₂O₃ and the PANI chains.

Acknowledgements

The authors gratefully acknowledge the National Natural Science Foundation of China for financial support to this work under Grant NSFC No. 20573112 and 20473091.

References

- 1 X. Y. Zhang, W. J. Goux and S. K. Manohar, J. Am. Chem. Soc., 126 (2004) 4502.
- 2 H. Yan, N. Sada and N. Toshima, J. Therm. Anal. Cal., 69 (2002) 881.
- 3 M. Day, A. V. Nawaby and X. Liao, J. Therm. Anal. Cal., 86 (2006) 623.
- 4 D. C. Schnitzler, M. S. Meruvia, I. A. Hummelgen and A. J. G. Zarbin, Chem. Mater., 15 (2003) 4658.
- 5 Y. Z. Long, Z. J. Chen, J. L. Duvail, Z. M. Zhang and M. X. Wan, Physica. B., 370 (2005) 121.
- 6 S. X. Wang, L. X. Sun, Z. C. Tan, F. Xu and Y. S. Li, J. Therm. Anal. Cal., 89 (2007) 609.
- 7 T. K. Sarma and A. Chattopadhyay, Langmuir, 20 (2004) 4733.

- 8 W. G. Li, Q. X. Jia and H. L. Wang, Polymer, 47 (2006) 23.
- 9 H. Fukushima, L. T. Drzal, B. P. Rook and M. J. Rich, J. Therm. Anal. Cal., 85 (2006) 235.
- 10 S. J. Park, S. Y. Park, M. S. Cho, H. J. Choi and M. S. Jhon, Synth. Met., 152 (2005) 337.
- 11 T. M. Wu and Y. W. Lin, Polymer, 47 (2005) 3576.
- 12 J. G. Deng, X. B. Ding, W. C. Zhang, Y. X. Peng, J. H. Wang, X. P. Long, P. Li and A. S. C. Chan, Eur. Polym. J., 38 (2002) 2497.
- 13 M. Avella, S. Cosco, M. L. Di Lorenzo, E. Di Pace and M. E. Errico, J. Therm. Anal. Cal., 80 (2005) 131.
- 14 S. J. Yoshimoto, F. Ohashi and T. Kameyama, J. Polym. Sci: Part B: Polym. Phys., 43 (2005) 2705.
- 15 S. S. Ray and M. Biswas, Synth. Met., 108 (2000) 231.
- 16 Y. J. Yu, B. Che, Z. H. Si, L. Li, W. Chen and G. Xue, Synth. Met., 150 (2005) 271.
- 17 L. L. Ding, X. W. Wang and R. V. Gregory, Synth. Met., 104 (1999) 73.
- 18 S. Kazim, V. Ali, M. Zulfequar, M. M. Haq and M. Husain, Curr. Appl. Phys., 7 (2007) 68.
- 19 B. J. Ash, L. S. Schadler and R. W. Siegel, Mater. Lett., 55 (2002) 83.
- 20 J. X. Huang and R. B. Kaner, J. Am. Chem. Soc., 126 (2004) 851.
- 21 T. K. Sarma and A. Chattopadhyay, Langmuir, 20 (2004) 4733.
- 22 P. K. Khanna, M. V. Kulkarni, N. Singh and S. P. Lonkar, Mater. Chem. Phys., 95 (2006) 24.
- 23 Y. J. He, Appl. Surf. Sci., 249 (2005) 1.
- 24 S. X. Wang, Z. C. Tan, Y. S. Li, L. X. Sun and T. Zhang, Thermochim. Acta., 441 (2006) 191.
- 25 S. P. Armes, S. Gottesfeld, J. G. Beery, F. Garzon and S. F. Agnew, Polymer, 32 (1991) 2325.
- 26 D. Lee and K. Char, Polym. Degrad. Stab., 75 (2002) 555.

Received: December 11, 2006 Accepted: Janary 4, 2007 OnlineFirst: October 25, 2007

DOI: 10.1007/s10973-006-8298-3